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Abstract:
Most of available controllers has to be set up properly to obtain desired closed loop be-
havior. The searched controller is tuned to track a prescribed setpoint and fit specified
constraints placed on its action variables. The tuning is proposed for LQG controller, for
which the tuning is almost unexplored in compare to PID controllers. Tuning presented in
this contribution is done for multidimensional adaptive LQG controller. Controller qual-
ity is evaluated by Monte Carlo approach using identified system model for performing
off-line simulations. The numerical optimization searches the needed tuning.
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1. INTRODUCTION

This paper describes an approach of a multivariate controller design. Properly set up modern
controller targets to achieve smaller disturbances and better desired value tracking of the con-
trolled system output quantities than it is available with the classical controllers. Besides the
control quality, it is also advantageous from the viewpoint of resources, energy, and production
costs. The tuned controller is adjusted to fit to the specified constraints while considering the
incomplete knowledge of the controlled system.

An important property of the majority of real systems is, that they have placed constraints on the
variables, which must not be exceeded. The tuning parameters generally influence the effective
range of controller variables, and so the tuning is a possible tool for ensuring the constraints
compliance by the controller.

In the reality, the controlled system is never known completely. The aim of the work is to
create a method of controller tuning which considers the model uncertainty. The controller is
the adaptive one and it is tuned to satisfy the constraints in probabilistic sense according to
the uncertainty of the model parameters. The controlled system is identified using Bayesian
methodology, thus the model parameters are obtained in form of distribution, which describes
the uncertainty.

2. CONTROLLER TUNING

The controller tuning process consists of the following parts. The identified system model to be
controlled with inputs denoted by ut and outputs by yt at time t, is connected to the controller



forming a closed loop. This configuration generates the closed loop data d(T ), consisting of
both input and output values through whole simulation length T , see the left part of the Figure
1. The controller is parametrized by the searched tuning knobs quantity q.

Fig. 1: Closed loop evaluation.

To evaluate the controller quality, the closed loop data d(T ) are used by loss functions Zc and
Zo representing the users requirements fulfillment. The functions Zc represents the constraint
part and Zo the objective part of the requirements, see the right part of the Figure 1. The task of
the controller tuning is to find such tuning knob values, for which the requirements in the form
of the loss functions are satisfied.

The dynamic stochastic system used for closed loop quality evaluation is given in the form of
a pdf over the closed loop variables

f(yt|ut, d(t − 1)). (1)

This model is the result of the identification including uncertainty in parameters. The input
actions ut generated by a generally randomized controller are described by pdf

f(ut|d(t − 1), q), (2)

where q denotes the tuning knobs. In fact, for most common deterministic controllers this pdf
is defined as the Dirac function.

The constraints are described by data dependent function Zc being non-positive, when the con-
straints are met

Zc : d(T )∗ 7→ R
c̊, Zc ≤ 0, (3)

where c̊ denotes the number of constraints. The controller performance objective function

Zo : d(T )∗ 7→ R (4)

is decreasing with increasing controller performance.

The controller tuning is formulated as a stochastic optimization task

minimize E{Zo|q}

subject to E{Zc|q} ≤ 0 (5)

over tuning knobs q ∈ q∗.

3. CLOSED LOOP PERFORMANCE EVALUATION

3.1 Objective Function

The objective expresses commonly the wish that the quality of the regulation process in certain
sense should be as high as possible subject to the present constraints. The desired signals



setpoints are described by the dref . A typical wish on small tracking error of outputs and
control effort of inputs is expressed by the objective function Zo

ZT
o =

1

T

T∑
τ=1

(dτ − dref
τ )′W (dτ − dref

τ ), (6)

where W is a positive semi-definite matrix of appropriate dimensions.

The matrix W is usually diagonal with non-zero only those elements corresponding to signals
in d with prescribed reference trajectory or setpoint. The values of the non-zero elements of W

are usually chosen to be reciprocal to the variances of respective signals in d. This approach
puts more importance on proper tracking of less noisy channels, while channels with higher
variance take less effort of controller.

3.2 Noise Compensation Task

The second function evaluates a proportional amount of time where constraints are satisfied to
the total length of simulation. In the discrete case, it is the relative frequency of constraints
satisfaction

ZT
c,i = αmin −

1

T

T∑
t=1

χCi
(di,t), (7)

where χCi
is characteristic function of the set Ci defining the allowed data range, and number

αmin ∈ [0, 1] relaxes the requirement of constraint satisfaction to a specified level.

This definition is suitable for situations where the constraints can be violated any time during
the simulation. This is the case of noise compensation control, where the control loop generates
a stationary process. Then it holds

ZT
c,i

T→∞

−→ αmin − P(di ∈ Ci) almost surely, (8)

where P denotes probability.

4. OPTIMIZATION

In general case the pdf of data f(d(T )) is available only through samples. Thus the same holds
for functions Z•. Therefore the optimization problem (5) forms a stochastic optimization task.
Sample path method is used to approximate it by a deterministic optimization task.

Let for a function h• : q∗ × R
ξ̊ 7→ R

Z̊• and random vector ξ hold

Z•(q) ≡ h•(q, ξ). (9)

Let the expected value EZ•(q) be approximated with Ẑ•(q)

Ẑ•(q) =
1

N

∑
h•(q, ξi), (10)

where N is a positive integer and {ξi}
N
i=1 is a sequence, called sample path, of independent

samples of ξ. Fixing this sequence at constant samples, the optimization becomes determinis-
tic. The deterministic optimization is solved by numerical optimization methods from Matlab
Optimization Toolbox.



5. CLOSED LOOP COMPONENTS

5.1 Model

General description of the system is given by predictive pdf

f(yt|ut, d(t − 1)) = (11)

=

∫ ∫
f(yt|ut, ϕt−1, θ, R)f(θ, R|d(0))dθdR,

where yt and ut denotes system output and input; model state ϕt contains delayed signal values;
input and output data up to time t are denoted by d(t). The first factor in the integral in (11) is
the ARX model of the system with paramers θ and variance R. The second factor in integral is
the pdf of ARX model parameters obtained from Bayesian identification, see (Peterka, 1981).
It is a Gauss-inverse-Wishart distribution. The integrated pdf f(yt|ut, d(t − 1)) is the Student
distribution being sampled during the simulation.

5.2 Controller

The controller action is deterministic ut = r(ϕt, q) and is generated by adaptive LQG con-
troller. The LQG criterion is of the form

Jt =

t+T∑
τ=t

(q1l
2
1;τ + q2l

2
2;τ + . . . + qnl2n;τ ), (12)

where the scalar weights q• ≥ 0, called penalization coefficients, are taken as the tuning knobs.
The linear vector function lt depends on quantities yt, ut and ϕt and measures the signal de-
viations from the desired values. Its elements are selected according to requirements on the
controller. Common types are the tracking error yt − yref

t , magnitude of input signal ut and its
difference ut − ut−1.

6. EXPERIMENT

Presented experiment uses a model of single axis helicopter. The aim of the study is to create
a controller respecting the given constraints placed on the action signal. The experiment uses
adaptive controller to track the changing working point of the nonlinear Simulink model. For a
comparison using the result is compared with non-adaptive controller behavior.

The aim of the control is to follow prescribed varying setpoint. The constraints are placed on
the magnitude and increment of the action signal.

ut ∈ [−0.8, 0.8]

ut − ut−1 ∈ [−0.5, 0.5]

6.1 Results

The tuned controller is defined by following criterion

Jt =

t+T∑
τ=t

y2
τ + q1u

2
τ + q2(uτ − uτ−1)

2 (13)
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Fig. 2: Simulink scheme of the model

The optimized tuning knobs has value of q = [0.034, 0.013].

The obtained controller is verified with the original Simulink model.. The result is shown in
the Figure 6.1.
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Fig. 3: Controller verification

The designed controller verified that action signal satisfies the prescribed constraints while
keeping the output close to the varying reference trajectory. The adaptive property of the con-
troller can be seen in the verification diagram, where the oscillation, caused by change of the
working point of the nonlinear Simulink model, are being reduced as the model is being adapted
for particular working point until it is changed to another value. This behavior demonstrates
advantage of the adaptivity.



7. CONCLUSION

This contribution is focused on the adaptive LQG controller tuning. Multiple constraints and
multiple input and output variables are considered. The method employs the Bayesian approach
to deal with the uncertainty contained in imprecise knowledge of the controlled system. The
obtained controller is calculated with respect to these uncertainty and takes on account whole
range of uncertain parameters. The other method used are the Monte-Carlo for controller qual-
ity evaluation and numerical optimization for the tuning itself.

The results of this thesis shows that the aims where successfully achieved. The proposed meth-
ods and algorithms were implemented as a software toolbox Designer and successfully tested
on several complex experimental models. The important contribution of the thesis is a step
towards freeing the control engineers from manual controller tuning and to support usability of
the model based controller in practice.

This method is being developed with the Designer Toolbox project (Novák et al., 2003) in
connection with the Jobcontrol environment (Tesař and Novák, 2005; Novák and Tesař, 2005)
simplifying experiments tasks.

Acknowledgment
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